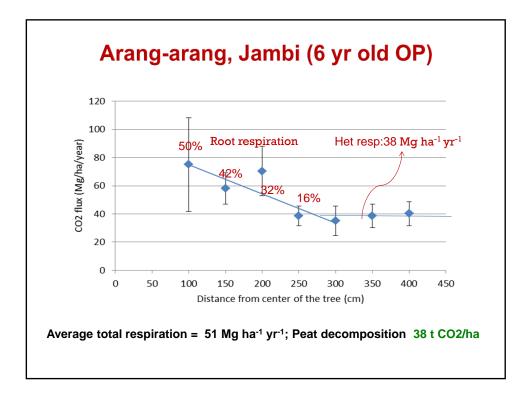
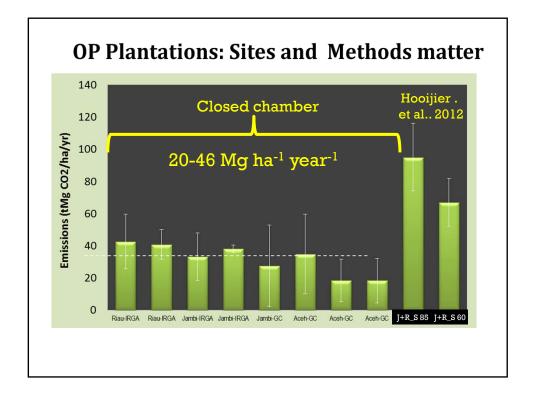
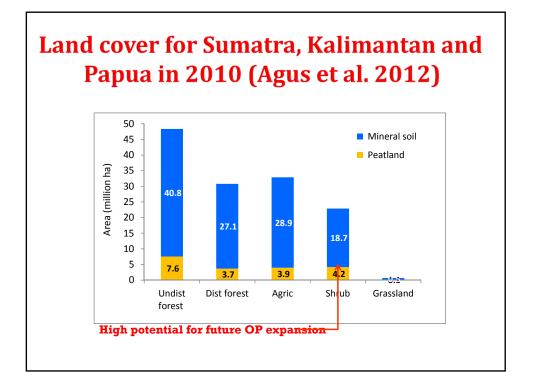

REFERENCE	DESCRIPTION	CO ₂ EMISSION (Mg CO ₂ ha ⁻¹ yr ⁻¹) AT DIFFERENT PLANTATION DRAINAGE DEPTHS (cm)				
		50	60	70	85	100
\frown	Relationship predicts emissions of 13 Mg CO _{3.m} ha ⁻¹ yr ⁻¹ for each additional 0.1 m	> From 2	3 Mg CC	2 ha⁻¹ yr	⁻¹ , reinte	rpreted
Wösten et al. (1997)	drainage depth. Based on subsidence rate of 0.45 m y ⁴ , 60% decomposition, bulk C density of 0.00 g C m ³ .	65 ????	78	91	110.5	130
Delft Hydraulics (2006) and Hooijer et al.	Relationship predicts emissions of 0.91 Mg CO _{2-sq} ha ¹ yr ¹ for each additional 0.1 m drainage depth. Model is based on the subsidence model of Wösten et al. (1997) combined with closed chamber measurements.	45.5	54.6	64	77.4	91
(2010)			Wide	e estima	te of	
	Original model. Predicts emissions of 0.9 Mg CO _{2xeq} ha ⁴ from each additional 0.1 m drainage depth, assumin <mark>0 40% 0.com- position and a bulk carbon density of 0.068 g C cm⁻³.</mark>	emission/subsidence $_{45}$ ratio \rightarrow high uncertainty				
		45	ratio	→ tiðu	unçerta	ainty
	Decomposition contribute 60% subsidence, bulk carbon density of 0.068 g C cm ⁻³ .	67	81	94	115	135
Couwenberg et al. (2010)	Decomposition contributes 40% bulk carbon density of 0.138 g C cm ³ in upper 0.5 m of peat profile; from Ywih et al. (2010), values only calculated for	89	-	-	-	-


How did Page *et al.* (2011) develop the EF of 95 Mg CO₂ ha⁻¹ yr⁻¹? Extrapolation of Hooijer et al. (2012)


NUMBER OF YEARS	CO ₂ EMISSION (Mg CO _{24q} ha ⁻¹ yr ⁻¹)	
5	178	
10	121	1
20	106	An.
25	100	de
30	95	24
40	90	The second
50	86	
	www.ntbang.aeptan.go	b.id 😡



	(2011) (estimates		
Land cover types		Agus et al. (2011)		
	for 2022 (Table II.5., NODA), based on 2000- 2009 trend	Historical 1990- 2010	Historical 2000- 2010, for Sumatra and Kalimantan only (a recalculation)	
Forest	43%	34% (6% Pr Forest)	28%	
Mixed	38%	34 % ¹⁾	26%	
Shrubland	0%	26%	23%	
Savanna	10%			
Grassland and Croplands	8%	6%	23%	
Wetland	1%			

Revised es	stimate of Indon	-	d area in
Island	Pe	eatland area (ha)	
	Wahyunto et al. (2003, 2004, 2006)	Revised Wahyunto et al. (2003, 2004, 2006) by Ritung et al. (2011)	Difference
Sumatra	7,212,798	6,436,649	776,149
Kalimantan	5,830,228	4,778,004	1,052,224
Papua	7,759,372	3,690,921	4,868,451
Total	20,802,398	14,905,594	5,896,804
		www.lit	bang.deptan.go.id 🕹

11

	2005 Diesel Baseline	PO Biodiesel	PO Renewable
Emissions Category	Baseline	PO Biodiesei	Diesel
Net Agriculture (w/o land use change)	-	- 5	5
Land Use Change	-	. 46	47
S1: Peat EF of 38 Mg CO2/ha/yr		32	33
S2: S1 + Ind forest area affected adjusted from 43 to 28% and shrubland from 0 to 15% for Indonesia		30	30
S3: S2 + Use new peatland map of Ind (14% less peatland in Sumatra and Kalimantan)		29	30
Fuel production	18	25	31
Fuel and feedstock transport	-	- 4	4
Tailpipe Emissions	79	1	
Net Emissions	97	81	87
% Reduction Relative to Baseline (EPA)			
EPA estimate		-17%	-11%
S1		-31%	-25%
S2		-33%	-27%
S3		-34%	-28%

Conclusions and Recommendation

- EF for peat decomposition of 95 Mg CO₂ ha⁻¹ yr⁻¹, based on subsidence measurement was not supported by valid C stock change observation.
- Our estimate as high as 38 Mg CO₂ ha⁻¹ yr⁻¹ represents direct measurements of CO₂ fluxes using closed chambers from several locations in SE Asia and thus more geographically representative.
- Shrubland change to OP plantation is an importat trajectory, esp. For Indonesia and this has not been considered by EPA.
- EPA should also consider the land use change policies of Indonesia and Malaysia

